The major regulatory element upstream of the alpha-globin gene has classical and inducible enhancer activity.
نویسندگان
چکیده
A major positive regulatory element has recently been identified 40 kb upstream from the human zeta 2-globin gene. This regulatory element increases the expression of a linked alpha-globin gene in mouse erythroleukemia cells and in transgenic mice. This element has been shown to share many of the structural and functional features of the locus control region (LCR) of the beta-globin gene cluster. We have examined the activity of a small fragment from this regulatory domain (alpha LCR) in a transient expression system. We show that this element is active as an enhancer in the erythroid environment of K562 cells. It is somewhat less effective as an enhancer in the nonerythroid environment of HeLa cells. This alpha LCR fragment does not exhibit promoter specificity because it can activate both the promoter of its endogenous target gene and the heterologous promoter of the SV40 early genes. Although the major activity of this element is mediated by its interaction with the promoter of the alpha-globin gene, some increase in activity is seen when structural elements from the 5' end of the alpha-globin gene are included with the target promoter. In addition, we show that the enhancing activity of the alpha LCR is potentiated by hemin-induction of K562 cells. Whereas phorbol esters that induce megakaryocytic differentiation of K562 cells markedly decrease alpha-globin messenger RNA accumulation, they do not seem to have a negative effect on the activity of the alpha LCR. These studies suggest a role for the alpha LCR in the basal activity of the alpha-globin gene in erythroid cells and in its increased expression seen with erythroid differentiation. The mechanism of negative regulation of alpha-globin gene expression in phorbol-differentiated K562 cells does not appear to be mediated through the action of the alpha LCR.
منابع مشابه
Targeted inactivation of the major positive regulatory element (HS-40) of the human alpha-globin gene locus.
We have examined the role of the major positive upstream regulatory element of the human alpha-globin gene locus (HS-40) in its natural chromosomal context. Using homologous recombination, HS-40 was replaced by a neo marker gene in a mouse erythroleukemia hybrid cell line containing a single copy of human chromosome 16. In clones from which HS-40 had been deleted, human alpha-globin gene expres...
متن کاملSpatial configuration of the chicken α-globin gene domain: immature and active chromatin hubs
The spatial configuration of the chicken alpha-globin gene domain in erythroid and lymphoid cells was studied by using the Chromosome Conformation Capture (3C) approach. Real-time PCR with TaqMan probes was employed to estimate the frequencies of cross-linking of different restriction fragments within the domain. In differentiated cultured erythroblasts and in 10-day chick embryo erythrocytes e...
متن کاملCTCF-dependent enhancer blockers at the upstream region of the chicken alpha-globin gene domain.
The eukaryotic genome is partitioned into chromatin domains containing coding and intergenic regions. Insulators have been suggested to play a role in establishing and maintaining chromatin domains. Here we describe the identification and characterization of two separable enhancer blocking elements located in the 5' flanking region of the chicken alpha-globin domain, 11-16 kb upstream of the em...
متن کاملRegulation of human alpha-globin gene expression and alpha-thalassemia.
Hemoglobin and globin genes are important models for studying protein and gene structure, function and regulation. We reviewed the main aspects of regulation of human alpha-globin synthesis, encoded by two adjacent genes (alpha(2) and alpha(1)) clustered on chromosome 16. Their expression is controlled mainly by a regulatory element located 40 kb upstream on the same chromosome, the alpha-major...
متن کاملChromosome looping at the human alpha-globin locus is mediated via the major upstream regulatory element (HS -40).
Previous studies in the mouse have shown that high levels of alpha-globin gene expression in late erythropoiesis depend on long-range, physical interactions between remote upstream regulatory elements and the globin promoters. Using quantitative chromosome conformation capture (q3C), we have now analyzed all interactions between 4 such elements lying 10 to 50 kb upstream of the human alpha clus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 81 4 شماره
صفحات -
تاریخ انتشار 1993